技術(shù)文章
TECHNICAL ARTICLES以立方石榴石型Li7La3Zr2O12 (LLZO)作為固態(tài)電解質(zhì)的固態(tài)電池(SSB),具有高鋰離子電導(dǎo)率、低電子導(dǎo)電率(EC)、高機(jī)械和熱穩(wěn)定性以及寬電化學(xué)窗口等特點(diǎn),有望成為推動(dòng)下一代儲(chǔ)能技術(shù)騰飛的“種子選手"。不過研究發(fā)現(xiàn)LLZO表面容易產(chǎn)生由LiOH和Li2CO3組成的鋰離子非均勻(厚度、成分差異)絕緣層,導(dǎo)致LLZO與金屬鋰的潤(rùn)濕性較差,從而在充放電過程中引起高界面電阻甚至是Li枝晶的形成,嚴(yán)重影響LLZO-SSBs的電化學(xué)性能。為了增強(qiáng)固態(tài)電解質(zhì)與金屬鋰的浸潤(rùn)性,本項(xiàng)工作中在界面引入Sb層,允許更多的Li擴(kuò)散到LLZO表面,從而很大降低Li/LLZO的界面電阻。[1]
然而,在對(duì)界面層的化學(xué)分析過程中存在著技術(shù)挑戰(zhàn)。首先,常規(guī)XPS的探測(cè)深度較淺(<10 nm),難以直接探索埋層界面處化學(xué)組成和化學(xué)態(tài)的變化。其次,雖可通過離子濺射技術(shù)來進(jìn)行XPS深度剖析,但離子濺射是一種破壞性技術(shù),可能會(huì)存在擇優(yōu)濺射、離子轟擊誘導(dǎo)的混合和表面粗糙化等問題,進(jìn)而干擾金屬/金屬化合物的化學(xué)狀態(tài)的準(zhǔn)確解析,無法實(shí)現(xiàn)真正的無損深度分析。對(duì)此,ULVAC-PHI公司開發(fā)了實(shí)驗(yàn)室硬X射線光電子能譜(HAXPES)技術(shù),其Cr Kα X射線(hν = 5414.7 eV)將探測(cè)深度提升至常規(guī)XPS的3倍,可直接分析約30 nm厚的埋層。值得一提的是,HAXPES的探測(cè)深度大于離子束穿透深度,因此利用HAXPES結(jié)合離子刻蝕深度分析時(shí),HAXPES能夠在離子束破壞樣品前探測(cè)埋層界面的化學(xué)態(tài),為研究未受干擾的埋層/體相的化學(xué)組成提供了好的機(jī)會(huì)。
例如本文中,研究人員巧妙地利用離子濺射減薄技術(shù)與XPS-HAXPES聯(lián)合分析方法,成功對(duì)Sb涂層的LLZO表/界面進(jìn)行了無損深度分析,為鋰離子傳輸機(jī)制以及Sb對(duì)界面改性的研究提供了重要的數(shù)據(jù)支持。
圖1. 清潔的LLZO(樣品1)以及Li/Sb-LLZO-SBB(樣品2-5)的光學(xué)照片。
為了研究Sb對(duì)界面改性的影響,制備了多組樣品(見圖1)進(jìn)行對(duì)照實(shí)驗(yàn):
① 樣品1:LLZO,熱處理(600 °C,1 h,Ar氣氛)+ 拋光(過程中接觸空氣< 30 s);
② 樣品2:通過磁控濺射技術(shù),在樣品1表面沉積約50 nm厚的Sb;
③ 樣品3:樣品2與熔融Li短暫接觸;
④ 樣品4:樣品2被熔融Li(250 °C)完整的包覆;
⑤ 樣品5:未被熔融Li包覆的樣品1。
值得注意的是,理論計(jì)算得到Cr Kα對(duì)Sb/LLZO體系中La 3d、O 1s、Sb 3d5/2、C 1s和Li 1s的探測(cè)深度分別為16.0、16.8、17.6和19.2 nm,而1 KeV Ar離子以45°入射角時(shí)的濺射損傷深度多達(dá)5 nm。這意味著交替的刻蝕-HAXPES采譜-刻蝕深度分析過程,可以探測(cè)Sb/LLZO埋層界面未受擾動(dòng)的化學(xué)狀,這是使用傳統(tǒng)的XPS深度分析所無法實(shí)現(xiàn)的。
圖2. LLZO表面至體相的La 3d5/2,O 1s,C 1s和Li 1s HAXPES譜圖以及深度上化學(xué)組分分布的示意圖。(刻蝕速率:2.3 nm/min,相對(duì)于Ta2O5標(biāo)樣)
在沉積Sb/Li之前,需要對(duì)LLZO表面進(jìn)行拋光和熱處理。然而,LLZO表面對(duì)水分和空氣敏感,拋光時(shí),即便是在有保護(hù)氣體的情況下歷經(jīng)短暫(<30 s)的空氣暴露,仍然引入了平均厚度為幾個(gè)納米的非均相Li2CO3覆蓋層(見圖2),主要來自LLZO的Li與潮濕空氣或碳化物發(fā)生了化學(xué)反應(yīng)。XPS-HAXPES結(jié)果還表明濺射清潔可以去除LLZO外表面的Li2CO3,卻無法去除Li2O/LiOH,但熱處理可以獲得相對(duì)清潔的LLZO表面。
圖3. 樣品2表面至體相的La 3d5/2,O 1s,C 1s和Li 1s HAXPES譜圖以及深度上化學(xué)組分分布的示意圖。
接下來,為了揭示Sb/LLZO界面處未受擾動(dòng)的Sb的化學(xué)態(tài),分別在濺射前后對(duì)樣品2進(jìn)行了HAXPES實(shí)驗(yàn)。如圖3所示,HAXPES結(jié)果顯示在沉積Sb后,沒有檢測(cè)到Li2CO3和Li2O/LiOH的信號(hào),表明Sb可以打開與LLZO表面殘余污染物之間的化學(xué)反應(yīng),并且在Sb/LLZO界面形成了新的產(chǎn)物L(fēng)ixSb合金。
圖4. 樣品4的Sb 3d5/2和Li 1s HAXPES深度分析。
LixSb合金可能是Li3Sb或者Li2Sb。為確定Li-Sb合金的組成、分布及其形成機(jī)理,本文中開展了進(jìn)一步的液滴實(shí)驗(yàn)。隨后進(jìn)行了HAXPES分析,并與圖3結(jié)果進(jìn)行對(duì)比,發(fā)現(xiàn)二者生成的LixSb的化學(xué)位移(ΔE)存在差異。結(jié)果證明了Sb在液態(tài)Li中會(huì)形成更穩(wěn)定的金屬間相Li3Sb(ΔE=?2.2±0.2 eV),而在Sb/LLZO界面上只形成非常薄的Li2Sb(ΔE=?1.4±0.2 eV)反應(yīng)層。原因在于液態(tài)Li溶于Sb的溶解度比固態(tài)Li更高,且比Li從LLZO晶格中擴(kuò)散到Sb層的速率更快,故前者更能生成富Li的Li3Sb相。
此外,通過沉積不同厚度的Sb層做性能對(duì)比實(shí)驗(yàn),驗(yàn)證了當(dāng)Sb厚度約為10 nm時(shí),界面電阻小的(4.1(1) Ω cm2),相應(yīng)的Li/10 nm-Sb-LLZO/Li對(duì)稱電池,在室溫下電流密度為0.2 mA cm – 2,臨界電流密度高達(dá)0.64 mA cm – 2以及過電壓只為40-50 mV。
總之,本文充分體現(xiàn)了HAXPES在對(duì)埋層界面化學(xué)態(tài)無損深度分析上的優(yōu)勢(shì)。更重要的是,ULVAC-PHI推出了新一代的XPS設(shè)備---PHI GENESIS 900,可同時(shí)搭載常規(guī)XPS(Al Kα)和HAXPES(Cr Kα),具備原位XPS-HAXPES表征的能力,實(shí)現(xiàn)從表面至體相的無損深度分析,為表/界面研究提供重要的技術(shù)支持。
參考文獻(xiàn)
[1] Dubey, R., et al., Building a Better Li-Garnet Solid Electrolyte/Metallic Li Interface with Antimony. Adv. Energy Mater. 2021, 11, 2102086. DOI: 10.1002/aenm.202102086.
-轉(zhuǎn)載于《PHI表面分析 UPN》公眾號(hào)
掃一掃,關(guān)注公眾號(hào)
服務(wù)電話:
021-34685181 上海市松江區(qū)千帆路288弄G60科創(chuàng)云廊3號(hào)樓602室 wei.zhu@shuyunsh.com服務(wù)熱線:
021-34685181
17621138977